Рабочее давление компрессора. Назначение пневматических магистралей вагона. Давление сжатого воздуха в них

На работу компрессорной станции в значительной мере влияет выбор необходимого давления воздуха у потребителей во всей сети и на отдельных участках. Давление сжатого воздуха на выходе из компрессорной станции должно соответствовать давлению, которое необходимо пневмоприемникам.

Эксплуатация компрессорных установок, подающих сжатый воздух пневмоприемникам с давлением ниже необходимого, приводит к потере производительности пневмоприемников, а подающих сжатый воздух пневмоприемникам с давлением значительно выше необходимого, приводит к бесполезной затрате энергии. Так, например, повышение давления на 1% увеличивает перерасход электроэнергии на 0,5%. Давление воздуха при выходе его из компрессора должно быть выше необходимого только на величину потерь давления в арматуре, воздухопроводах и вспомогательном оборудовании.

Потери давления воздуха, движущегося по воздухопроводу, пропорциональны длинам отдельных участков трубопроводов, при этом принято считать удельные расчетные потери давления на единицу длины трубопровода одинаковыми для различных участков трубопроводов. Учитывая, что расход воздуха потребителями и потери в сетях можно принять приблизительно прямо пропорциональным давлению воздуха, следует везде, где это не отражается на производстве, снижать давление расходуемого воздуха.

Каждая компрессорная станция должна иметь характеристику требуемого давления сжатого воздуха в зависимости от производительности компрессоров с учетом воздушной сети трубопроводов и типов пневмоприемников.

Пример графической характеристики необходимого давления сжатого воздуха для разных случаев воздухоснабжения можно представить следующим образом (.

Линия «аа» изображает противодавление при расположении приемников, требующих постоянного давления сжатого воздуха, в непосредственной близости от воздухоснабжающей установки. Линия «а b » относится к наиболее распространенному случаю переменного противодавления, обусловленного одновременно воздушной сетью и воздухоприемниками, требующими постоянного давления сжатого воздуха. Линия «ос » соответствует случаю очень протяженной воздушной сети, на преодоление сопротивления самой сети.

3. Расчет и выбор оборудования систем производства сжатого воздуха

3.1. Выбор компрессоров

Выбор типа марки, количества и производительности компрессоров, устанавливаемых в машинном зале компрессорной станции, производят на основе:

1) средней расчетной и максимально длительной нагрузок на компрессорную станцию;

2) требуемого давления сжатого воздуха у потребителей;

3) принятого способа подачи сжатого воздуха пневмоприемникам;

4) сведений о типах и марках компрессоров, выпускаемых компрессорными заводами (таблица 5, 6).

Выбирая компрессор по давлению, необходимо, чтобы конечное давление воздуха, выходящего из компрессора, превышало требуемое давление воздуха у мест потребления на более чем на 0,3 – 0,4 МПа, так как редуцирование воздуха с высокого давления на низкое является неэкономичным.

Не следует принимать поршневой компрессор, сжимающий воздух до давления, значительно превосходящего требуемое, так как у поршневого компрессора давление регулируется автоматически соответственно давлению в сети, в результате чего будет непроизводительно расходоваться электроэнергия.

При конечном давлении до 0,6 МПа применяются одноступенчатые компрессоры, а при большом давлении – многоступенчатые.

Таблица 5

Технические данные поршневых воздушных компрессоров систем воздухоснабжения

Типоразмер

Подача, м 3 /мин

Давление, МПа

Электродвигатель

Габаритные размеры, мм




2ВУ1-2,5/13М8

А2К85/24-8/36У4

БСДК-15-21-12

ДСК-12-24-12У4

БСДК-15-21-12

СДК2-16-24-12КУХЛ4

СДК2-16-24-10КУХЛ4

СДК2-16-44-10КУХЛ4

2ВУ1-2,5/13М4

БСДКП-15-21-12

2ВТ-1,25/26М1

БСДК-15-21-12


АО2-82-6-ОМ2

БСДК-15-21-12

СДК2-17-26-12х

Примечание:

– давление всасывания;

– давление нагнетания.

Таблица 6

Технические характеристики центробежных воздушных компрессорных машин

Тип компрессора

Производительность

Рабочее давление, МПа

Потребляемая мощность, кВт

Число оборотов вала, об/с

Расход охлаждающей воды, кг/с

Для экономии электроэнергии и удобств эксплуатации компрессорных установок в компрессорной станции, работающей на один трубопровод пневмосети, рекомендуется устанавливать компрессоры, имеющие одинаковые конечные давления нагнетаемого воздуха.

При необходимости эксплуатации пневмоприемников, требующих различные давления сжатого воздуха, вопрос выбора компрессоров по конечному давлению сжатия решается в каждом отдельном случае в зависимости от количества расходуемого воздуха того или иного давления, стоимости раздельной прокладки воздухопроводов, а также других обстоятельств.

Способ подачи сжатого воздуха пневмоприемникам влияет на выбор компрессоров следующим образом: если пневмоприемники подключены к пневмосети, питающейся от компрессорной станции, то компрессоры должны иметь такую производительность, которая

покрывала бы максимальную длительную нагрузку на компрессорную станцию; если пневмоприемники питаются сжатым воздухом от баллонов или воздухосборников, имеющих достаточную емкость, то производительность компрессоров должна соответствовать средней расчетной нагрузке на компрессорную станцию.

При выборе компрессора следует руководствоваться следующими соображениями .

1. Общее количество компрессоров, устанавливаемых в машинном зале компрессорной станции, должно быть небольшое, лучше всего 4. Более 8 компрессоров не рекомендуется устанавливать в одном машинном зале, так как сильно удлиняется здание компрессорной станции и очень неудобно обслуживать агрегаты.

2. Производительность каждого в отдельности компрессора не должна быть больше производительности резервного компрессора и должна лежать в пределах допускаемых границ регулирования.

3. Производительность выбранного компрессора должна быть такой, чтобы он работал во всех сменах с высоким КПД.

4. Давление воздуха на входе в компрессор, в его всасывающем патрубке, а также создаваемое компрессором перед входом воздуха из нагнетательного патрубка должно соответствовать паспортным данным выбранного компрессора и обеспечивать требуемое давление воздуха у потребителей.

5. Установленная мощность привода компрессора должна быть небольшой с целью экономии электроэнергии.

6. Габариты компрессора с учетом вида передачи движения двигателя к компрессору и его массы должны быть минимальными.

7. Принятый к установке компрессор должен быть недорогим, но надежным в эксплуатации.

8. Для выработки сжатого воздуха должен применяться только воздушный компрессор.

При выборе типа компрессора также необходимо учитывать достоинства и недостатки того или иного типа, отдавая предпочтение тому типу компрессора, стоимость эксплуатационных затрат которого на 1 м 3 вырабатываемого воздуха будет минимальной. Например, вертикальные поршневые компрессоры имеют следующие преимущества перед горизонтальными:

Большую быстроходность и многооборотность;

Больший механический к.п.д.;

Меньшие потери от неплотностей поршня;

Более легкий фундамент при хорошей устойчивости;

Меньший вес и габаритные размеры в плане;

Более компактный и более дешевый привод компрессора;

Удобство монтажных работ;

Меньший износ цилиндров.

Однако вертикальные компрессоры относительно недолговечны вследствие многооборотности и требуют значительную высоту помещения для их установки.

По сравнению с вертикальными поршневыми компрессорами горизонтальные компрессоры имеют следующие преимущества:

Более удобно вести наблюдение за их работой в процессе эксплуатации;

Требуют меньшую высоту помещения;

Арматура и трубопроводы могут размещаться под полом помещения, в каналах и траншеях.

К недостаткам горизонтальных компрессоров следует отнести малооборотность, большие габаритные размеры в плане и значительный вес фундаментов.

Горизонтальные компрессоры зарекомендовали себя в условиях длительной эксплуатации как весьма надежные и удобные в обслуживании машины. Учитывая значительные преимущества вертикальных компрессоров, целесообразно применять вертикальные одноступенчатые и двухступенчатые компрессоры.

Мощные горизонтальные компрессоры с большим числом ступеней желательно применять в условиях, где требуется максимальная надежность при наиболее тяжелых условиях работы (например, при кессонных работах, в горной, металлургической, машиностроительной и химической промышленности) или там, где необходима непрерывная подача сжатого воздуха, так как вынужденная остановка компрессора может привести к аварии или к снижению выпуска продукции.

Приведенные выше преимущества и недостатки разных типов поршневых компрессоров, а также удобство эксплуатации и ремонта однотипных машин показывают, что не следует в одном машинном зале устанавливать компрессоры, разные по конструктивному исполнению (вертикальные и горизонтальные). Во всех случаях наиболее удобным в эксплуатации является применение в компрессорной станции однотипных компрессоров. Желательно, чтобы они были одинаковыми по производительности и давлению всасывания и нагнетания воздуха, так как при применении одинаковых компрессоров упрощается схема коммуникаций, улучшаются условия эксплуатации, монтажа и ремонта оборудования, а также создаются условия для применения средств автоматики.

На выбор типа компрессора влияют также тяжелые для компрессора условия эксплуатации: запыленность территории, окружающей компрессорную станцию, высокая температура и низкое барометрическое давление всасываемого воздуха.

Выбирая тип и количество компрессоров для размещения их в новом или реконструированном здании, следует произвести технико-экономические обоснования и сравнить величины капитальных затрат и сроки окупаемости, после чего остановиться на том или ином типе компрессора.

Наиболее распространенным приводом компрессоров является электрический. Основные его преимущества: простота устройства и обслуживания, надежность в работе, и постоянная готовность к действию. Последнее особенно важно для автоматизации компрессорных установок.

Для привода компрессоров иногда применяют паровую машину или газовый двигатель; в машинах малой и средней мощности – двигатель внутреннего сгорания, работающий на жидком топливе. Выбор привода для крупных компрессоров зависит от электробаланса предприятия. Двигатели внутреннего сгорания, работающие на жидком топливе, обладают автономностью действия, и поэтому широко используются для передвижных компрессорных станций.

Применяют также привод от паровой или газовой турбины с передачей через редуктор.

Паровая машина, турбина и двигатель внутреннего сгорания допускают изменение частоты вращения, благодаря чему возможно плавно и экономично регулировать производительность компрессора. Нормальные электродвигатели рассчитаны на постоянную частоту вращения. При постоянной частоте вращения производительность компрессора регулируют с помощью специальных устройств. Электродвигатели с плавным изменением частоты вращения сложны и недостаточно экономичны и применяются главным образом для привода компрессов сверхвысокого давления, для которых нельзя или нецелесообразно использовать другие способы регулирования производительности. Взамен распространенных для этой цели электродвигателей постоянного тока с ртутными выпрямителями в последнее время стали применять более простые, экономичные и надежные асинхронные электродвигатели переменного тока с полупроводниковыми тиристорными преобразователями частоты электрического тока.

Для правильного выбора электродвигателя в качестве привода компрессора необходимо учесть следующие параметры и условия:

Напряжение (род тока принимаем трехфазный);

Мощность на валу компрессора;

Мощность трансформатора, от которого питается рассматриваемый электродвигатель;

Быстроходность компрессора;

Род передачи и передаточное число;

Тип компрессора (поршневой или турбокомпрессор).

Пуск любого дизеля осуществляется путем раскручивания коленча­того вала до частоты вращения, при которой происходит самовоспламенение топлива, впрыснутого в цилиндр, от температуры сжатия свежего воздушного заряда (630-850°С).

Для раскручивания коленчатого вала применяют сжатый воздух, хранящийся в баллонах и поступающий в цилиндры через пусковые клапаны, установленные на крышках. Управляет пусковыми клапанами воздухораспределитель, который учитывает положение поршня в цилиндре (это не должны быть крайние положения - ВМТ и НМТ), а также то, как расположены шатун и кривошип коленчатого вала относительно друг друга (от этого зависит направление будущего вращения). Спе­циальное блокирующее устройство системы должно исключить попадание сжатого воздуха в те цилиндры, где поршни, хотя и находятся в промежуточном между ВМТ и НМТ положении, но положение шатуна и кривошипа соответствует вращению в сторону, противоположную команде машинного телеграфа. Эта команда подается с мостика судна.

По статистике главные двигатели в среднем запускаются от 500 до 900 раз в год на транспортном судне и от 1200 до 1500 раз в год на пассажирском судне. Пуск дизелей на маневрах производится через небольшие промежутки времени (0,5 - 2 мин), а количество пусков за одну швартовку может достигать от 20 до 30. Ясно, что нужно иметь большой запас сжатого воздуха и соответствующую производительность компрессоров, подающих воздух в баллоны. Надежный пуск дизелей обеспечивается:

Удалением воздуха из топливной системы, заполнением ее топливом и очисткой фильтров;

Подбором сорта топлива по параметрам, характеризующим его самовоспламенение, испаряемость и текучесть в соответствии с условиями эксплуатации;

Применением масла с допускаемым пределом вязкости и его подогревом, предварительным проворачиванием дизеля, заполнением системы маслом;

Установкой оптимального угла опережения подачи топлива в цилиндры;

Временным увеличением дозы топлива на цикл в период пуска;

Равномерностью подачи топлива в цилиндры при пусковой частоте вращения.

Требуемая скорость вращения вала малооборотного двигателя дости­гается уже через 2 с после пуска, а в среднеоборотных

Рис. 2 Схема системы сжатого воздуха

четырехтактных дизелях это время несколько больше - около 4 с. Давление воздуха в баллонах чаще всего составляет 3 МПа. Однако пуск прогретого двигателя возможен и при более низких значениях давления – до 1 МПа.

На рис.2 показана схема системы сжатого воздуха дизельной установки морского судна. В главный двигатель I пусковой воздух подается из баллонов 2, которые заполняются электрокомпрессорами 14 и 15. Эти же компрессоры служат для заполнения баллонов 12, воздух которых идет для пуска вспомогательных двигателей 11, и баллонов 10, из которых воздух расходуется на тифоны 8, пневмоцистерны 4 питьевой и мытьевой воды, на хозяйственные нужды 6 и продувание кингстонов 7. Первоначальное заполнение баллонов при отсутствии на судне электроэнергии можно производить ручным компрессором 13. На магистрали, идущей к тифонам, стоит редукционный клапан 9, а магистрали к пневмоцистернам и магистрали, подводящей воздух к другим потребителям, установлен редукционный клапан 5; эти клапаны понижают давление воздуха до нужных значений. После электрокомпрессоров установлен влагомаслоотделитель 16, в котором сжатый воздух очищается от примесей воды и масла. На магистралях и баллонах установлены предохранительные клапаны 3, обеспечивающие безопасность их эксплуатации. Эти клапаны отрегулированы на максимальное давление, допускаемое в данной магистрали или емкостях. При превышении этого давления избыток воздуха будет выпущен в атмосферу.

Баллоны сжатого воздуха рекомендуется устанавливать в машинном отделении вертикально. При расположении баллонов вдоль машинного отделения их ставят с уклоном в корму 10-200. В нижней части баллонов предусматривается клапан для продувания конденсата, который постоянно в них накапливается ввиду неполной очистки воздуха во влагомаслоотделителях.

Удельный расход К пустого воздуха, по опытным данным, составляет 6-8 л свободного воздуха на один литр рабочего объема цилиндра двигателя.

В современных установках осуществляется автоматический пуск компрессоров при падении давления воздуха в баллонах ниже допустимого значения и их автоматическая остановка при достижении максимального давления. На всех баллонах и компрессорах установлены контрольные манометры, показывающие давление воздуха.

Правила Регистра СССР требуют хранение всего запаса пустого воздуха главных двигателей - не менее, чем в двух баллонах равной емкости. Запас воздуха определяется по его параметрам, размером двигателя, его оборотности и числу пусков подряд (для вспомогательных

двигателей – не менее 6, для главных - не менее 12 попеременно на передний и задний ход). Правила Регистра СССР также не допуска­ют хранение запаса воздуха вспомогательных двигателей в одном бал­лоне.

Количество компрессоров должно быть не менее двух, один из ко­торых должен быть независимым от главного двигателя. Производитель­ность каждого компрессора должна быть достаточной для заполнения всех воздухохранителей в течение 1 часа, начиная от давления 0,5 МПа до давления, необходимого для выполнения числа маневров, ука­занного ранее. Если запас воздуха в одном баллоне достаточен для выполнения этого числа маневров, то производительность компрессора должна быть достаточной для его заполнения в течение 1 часа.

Пневматическое оборудование вагона метрополитена состоит из шести самостоятельных пневматик и магистралей, которые объединяют комплекс приборов в зависимости от назначения

1. НП – комплекс приборов обеспечивающих создание сжатого воздуха, его очистку от механических примесей, масла, влаги и хранение, что бы обеспечить действие всех пневматических устройств.

Давление - 6,3-8,2; объём - 425 литров.

2.ТМ – обеспечивает все виды пневматического торможения и отпуска тормоза.

Давление – 5,0-5,2; объём 29 литров.

3.ДМ – обеспечивает работу автоматических дверей

Давление 3,4-3,6; объём 8 литров.

4. МУ – обеспечивает включение силовых электрических аппаратов

Давление 5,0-5,2; объём входит в НМ

5. АВТОСТОПНАЯ МАГИСТРАЛЬ – обеспечивает экстренный тормоз при сработке срывного клапана, отключая тяговые двигатели.

Давление 5,0-5,2; объём – входит в ТМ

6. МАГИСТРАЛЬ СИГНАЛЬНЫХ, КОНТРОЛЬНЫХ, ВСПОМОГАТЕЛЬНЫХ ПРИБОРОВ – обеспечивает контроль давления в ТЦ, ТМ, НМ, подачу звукового сигнала, работу стеклоочистителей.

Постоянного давления не имеет.

Назначение и устройство соединительных коробок СК43,СК25.

СК-43 (Силовая коробка). Предназначена для соединения силовых кабелей ТР и кабеля СЦ (схема).

Коробка соединительная СК-43Б

1 – металлический сварной короб; 2 – металлическая крышка с резиновым уплотнением; 3 – изоляционная панель; 4 – зажимы для подходящих проводов; 5,6 - клеммовое устройство.

Крепится к раме слева:

Изоляционная панель, на которой смонтировано клеммовое устройство для зажима наконечников кабелей СЦ;

Металлическая крышка с резиновым уплотнением, крепится 2-мя барашковыми зажимами.

СК-25Ж. «земляная коробка», на вагоне 2 коробки. Предназначены для соединения проводов и кабелей СЦ, ВспЦ и ЦУ, подлежащих заземлению. (показать в схеме)

Металлический сварной короб;

Изоляционная панель, на которой смонтирована контактная планка для зажима наконечников;

Металлическая крышка с резиновым уплотнением, крепится 2мя барашковыми зажимами.

Коробка соединительная СК-25Ж.

1 – металлическая крышка 2 - металлический сварной короб 3 – изоляционная панель

Принцип работы ВР усл. № 337.004 при полном служебном торможении и

Отпуске тормоза.

Для полного служебного торможения (ПСТ), необходимо при помощи крана машиниста понизить давление в тормозной магистрали на составе в один прием с 5 ат. до 3 ат.. При этом во время понижения давления сжатого воздуха в ТМ, давление понижается так же и в сообщающейся с ней магистральной камере главной части ВР. Так как при нейтральном положении магистральной диафрагмы магистральная и рабочая камеры между собой сообщаются, через клапан зарядки и калиброванное отверстие в верхней части зажима магистральной диафрагмы (d = 0,8 mm), то давление сжатого воздуха начинает падать и в рабочих камерах. Но диаметр калиброванного относительно объема рабочих камер отверстия рассчитан таким образом, что понижение давления сжатого воздуха в рабочих камерах происходит лишь незначительно (из-за маленького диаметра отверстия, воздух из рабочих камер не успевает перетекать в магистральную камер). Из-за возникшей разницы давлений в магистральной и рабочей камерах, магистральная диафрагма, усилием сжатого воздуха снизу, прогибается вверх, сжимая нагрузочную пружину. При подъеме диафрагмы вверх клапан зарядки усилием своей пружины закрывается и сообщение магистральной и рабочих камер прекращается (рис. 9). Таким образом, очевидно, что в рабочих камерах зафиксировалось определенное давление сжатого воздуха (около 4,7-4,8 ат), которое удерживает магистральную диафрагму в верхнем положении. При подъеме вверх, магистральная диафрагма, снизу воздействует на стержень, с 3-я манжетами закрепленный в её зажим сверху. Стержень, перемещаясь вверх, отсекает камеру дополнительной разрядки от атмосферы, и его средняя и нижняя манжеты сообщают КДР с тормозной магистралью. При этом происходит дополнительная разрядка ТМ в КДР и магистральная диафрагма прогибается вверх еще выше до упора в корпус и скорость срабатывания ВР на тормоз, увеличивается. В свою очередь, стержень с манжетами, воздействует на режимный шток снизу, который так же перемещаясь вверх, вместе с большой и малой режимными пружинами и режимным поршнем воздействует на режимную диафрагму снизу, и она прогибается вверх, преодолевая усилие своей нагрузочной пружины. Следует заметить, что при подъеме вверх режимные пружины не сжимаются, а при повышении давления сжатого воздуха в тормозной камере, они сжимаясь усилием режимной диафрагмы дают ей возможность частично прогнуться вниз. При подъеме режимной диафрагмы вверх, закрывается атмосферный клапан, разобщая тормозную камеру и тормозные цилиндры от атмосферы. Закрываясь, атмосферный клапан воздействует на свое подвижное седло – нижний торец полой трубки с питательным клапаном. Полая трубка под воздействием режимной диафрагмы (атмосферного клапана) снизу, перемещается вверх, преодолевая усилие возвратной пружины питательного клапана. Питательный клапан открывается, сообщая напорную магистраль с тормозной камерой и тормозными цилиндрами по каналам ТЦ и ОТЦ. Процесс наполнения воздухом будет продолжаться до тех пор, пока давление сжатого воздуха в тормозной камере (а следовательно и в тормозных цилиндрах) складываясь с усилием нагрузочной пружины режимной диафрагмы не преодолеет усилие режимных пружин (через режимный поршень)на режимную диафрагму снизу. Как только это произойдет, режимная диафрагма сделает частичный ход вниз. При этом питательный клапан усилием возвратной пружины закроется. Атмосферный клапан останется закрытым. Наступит положение полного баланса сил – перекрыша, с фиксированным, максимально возможным давлением в тормозных цилиндрах (2,7-2,9 ат при порожнем режиме), которое зависит от регулировки режимных пружин относительно площади режимной диафрагмы.

Отпуск тормоза.

Для полного отпуска тормоза, необходимо зарядить тормозную магистраль при помощи крана машиниста до рабочего давления 5 ат.. При этом давление сжатого воздуха так же увеличивается в магистральной камере. Когда давление сжатого воздуха в магистральной камере будет больше или равно давлению сжатого воздуха в рабочих камерах, магистральная диафрагма со стержнем с манжетами прогнется вниз (усилием сжатого воздуха и нагрузочной пружины сверху) и займет нейтральное положение. Лишившийся опоры снизу, режимный шток, режимные пружины и режимный поршень, так же переместятся вниз. Режимная диафрагма при этом, усилием сжатого воздуха и нагрузочной пружины сверху прогнется вниз и, как магистральная диафрагма, займет нейтральное положение. Атмосферный клапан откроется и тормозная камера, а следовательно и тормозные цилиндры сообщатся с атмосферой через канал полой трубки и атмосферные отверстия в верхней цокольной крышке ВР.

Сжатый воздух - воздушная масса, которая содержится в какой-либо емкости, при этом ее давление превышает атмосферное. Его используют в промышленности в разнообразных производственных операциях. Типичная система сжатого воздуха - это установка, работающая при давлении до десяти бар. В таких случаях воздушную массу сжимают в десять раз от ее первоначального объема.

Общая информация

При давлении в семь бар сжатый воздух практически безопасен при эксплуатации. Он способен обеспечить достаточную движущую силу инструмента не хуже, чем электрическая подача. При этом требуется меньшее количество затрат. Кроме того, такая система характеризуется более быстрым срабатыванием, что в конечном результате может сделать ее гораздо удобнее. Однако для этого потребуется учитывать параметры, приведенные ниже.



Применение сжатого воздуха

Довольно часто производственники используют этот вид энергии для быстрой и эффективной очистки оборудования от загрязнений и пыли. Кроме того, сжатый воздух широко применяют для продувки труб в котельных. В его используют для очистки помещений, оборудования и даже одежды от древесной пыли. В большинстве стран уже появились стандарты по применению этого вида энергии, например, в Европе это CUVA, а в США - OSHA. Кроме использования его в производственных операциях, широко распространены инструменты, которые работают непосредственно на воздушном ходу, - это шуруповерты, пневматические дрели, гайковерты, (при монтаже оборудования и строительстве), пульверизаторы (при проведении капитальных ремонтов). Помимо этого, сейчас широко используется сжатый воздух в баллончиках в пневматическом оружии.

Безопасность

Используя сжатый воздух, необходимо соблюдать меры безопасности, приведенные ниже.

  1. Запрещается направлять струю в рот, глаза, нос, уши и другие места.
  2. Нельзя обрабатывать сжатым воздухом открытые раны, т. к. под кожей могут образоваться пузырьки, если они дойдут до сердца, то приведут к сердечному приступу, а если до мозга, то могут спровоцировать Кроме того, попадая в рану, воздух может занести в нее инфекцию, которая находится в компрессорной системе или в трубах.
  3. Запрещено баловаться и направлять струю сжатого воздуха на других людей.
  4. Не следует накачивать давление в компрессорную систему сверх нормы.
  5. Все элементы пневматической установки должны тщательно закрепляться во избежание отрывов и, как следствие, травм.
  6. Запрещено проводить очистку оборудования от пыли и грязи в присутствии источника открытого огня и сварочных работ. Это может спровоцировать взрыв из-за наличия пыли во взвешенном состоянии.
  7. Работая с системами сжатого воздуха, необходимо пользоваться средствами индивидуальной защиты, например, очками или маской.
  8. Запрещено осуществлять затяжку муфт, в узлах или на трубах под давлением.
  9. При монтаже пневматической системы шланги следует крепить в местах с наименьшим риском повреждения (на потолках, стенах).


Преимущества сжатого воздуха

Теперь рассмотрим, в чем заключаются преимущества применения этого вида энергии на производственных линиях.



Сети сжатого воздуха

Для оптимальной работы и высокой экономичности установки необходимо выполнение следующих требований. В пневматической системе следует минимизировать потери, кроме того, воздух должен приходить к потребителям осушенным и чистым, это достигается путем установки специального осушителя, позволяющего конденсировать влагу. Также особое внимание необходимо уделять магистральным трубопроводам. Грамотная установка воздухопроводов - это залог долговечности функционирования, а также снижения расходов на обслуживание. За счет увеличения уровня давления в компрессоре можно компенсировать падение в трубопроводе.

Расчет потребления сжатого воздуха

Всегда включают в себя так называемые ресиверы (воздухосборники). В зависимости от производительности и мощности оборудования система может содержать несколько ресиверов. Их основное назначение - это сглаживание пульсаций давления, кроме того, внутри воздухосборника происходит охлаждение газовой массы, и это приводит к выпадению конденсата. Расчет сжатого воздуха заключается в определении потребления ресивера. Производится это по следующей формуле:

  • V = (0.25 х Q c х p 1 х T 0)/(f max х (p u -p l) х T l), где:
    - V - объем воздушного ресивера;
    - Q c - производительность компрессора;
    - p 1 - давление на выходе установки;
    - T l - максимальная температура;
    - T 0 - температура сжатого воздуха в ресивере;
    - (p u -p l) - заданная разность давления нагрузки и разгрузки;
    - f max - максимальная частота.

Процесс распыления наиболее просто определяется термином - «механическое средство нанесения покрытий». «Механический», потому что автоматическим или ручным инструментом (т.е. краскораспылителями) обеспечивают контролируемый процесс переноса лакокрасочного материала к поверхности окрашиваемого изделия. В данной статье мы рассмотрим процессы, которые требуются для снабжения сжатым воздухом в окрашивании методами распыления обычной краской и инструментарий, применяющийся для этого.

Минимальное количество оборудования, требуемое для выполнения окрасочных работ, зависит от специфики применяемого лакокрасочного материала. Однако его состав обычно входит в одну из двух групп:

Перед определением вида распылительного оборудования (поз. 5 и 6), мы должны исследовать систему воздушной поставки, и определить выгоды, которые могут быть получены при правильном выборе того или иного базового оборудования.

Подготовка сжатого воздуха

При создании систем приготовления сжатого воздуха необходимо учитывать изначальное состояние атмосферного окружающего воздуха, который попадает в компрессоры для сжатия. Почему это так важно? На диаграммах ниже приведены некоторые данные по состоянию окружающего воздуха.


Принято считать, что в одном кубическом метре окружающего воздуха находиться около 17,5 миллионов различных микрочастиц, и при сжатии в компрессоре такого воздуха, например до 8 бар, через него «проносится»: 17,5 х 8 = 140 миллионов микрочастиц в одном кубическом метре, которые могут отрицательно влиять на состояние различных потребителей, в т.ч. и при окрасочных работах.

Единицы измерения давления

Система сжатого воздуха всегда сформирована в систему полного кругооборота, начинаясь и заканчиваясь определенным значением давления атмосферного воздуха. Это понятие обычно измеряется в Атмосферах, что приблизительно равно 1 Бар. В технической документации DeVILBISS часто встречается величина PSI (фунты на квадратный дюйм). Соответствие с российскими единицами: 1 бар ~ 14,7 – 15 PSI.

Атмосферное давление воздуха немного меняется в зависимости от погодных условий, характерных для каждой местности в конкретное географическое время. Если посмотреть на прогноз погоды по телевидению (см. пример на рисунке) - можно будет увидеть, что изогнутые линии на карте (названными Изобарами) имеют замкнутую конфигурацию с областями равного атмосферного давления и отмечены значениями в Миллибарах (мбар или 1/1000 бар).

Для большей части территории России, атмосферное давление, типично, изменяется от 990 до 1040 мбар (См. рисунок). Однако, потому что атмосферное давление всегда присутствует вокруг нас, и его значения изменяются относительно немного, обычно игнорируется такая погрешность при калибровке манометров давления DeVilbiss, и обычно на них есть две шкалы – для измерений в PSI и в атмосферах (барах).

Однако существуют и другие единицы измерения давления, в зависимости от национальных принятых стандартов, поэтому мы приводим следующее основные соотношения для удобства применения: 14,7 PSI = 1 бар =100 кПа = 1 кг/cм2 = 750 мм рт. cт.

Циркуляция сжатого воздуха

Наружный воздух, проходя через компрессор, сжимается обычно в соотношении давлений 8:1 или 10:1, в зависимости от спецификации и исполнения компрессора.

Энергия, применяемая при сжатии воздуха от источника, например: электрического мотора или двигателя внутреннего сгорания, передается к воздуху через процесс сжимания газа в герметичном отсеке. В идеальном мире такая передача энергии была бы со 100 % эффективностью, но фактически получается значительно меньше.

Это - первый пункт в рассматриваемом процессе циркуляции воздуха, где работа сделана, и энергия потреблена. Количество используемой энергии будет зависеть не только от конечного давления, но также и от объема проходящего воздуха в минуту, который компрессор обязан сжимать. Сжатый воздух после этого подается в систему распределения (трубопроводы), где воздух будет протекать, пока давление в системе не сравняется с давлением, создаваемым компрессором.

Для нормального применения, это постоянно создаваемое компрессором давление воздуха слишком высоко, поэтому необходимо применение специального устройства контроля давления, называемое воздушным регулятором. При этом главная цель состоит в том, чтобы уменьшить произведенное давление воздуха на выходе из компрессора (порядка 14 бар в нормальных рабочих условиях) к давлению, годному к применению при окрасочных работах (между 0,05 и 7 бар), и поддерживать это давление постоянно.


Это будет возможно, только если:

а) компрессор поддерживает давление в линии выше необходимого регулируемого рабочего давления;

б) воздушный регулятор является способным к обработке такого объема воздуха, требуемого для снабжения пользовательского инструмента, потому что конечная цель - передача сжатого воздуха с требуемым давлением от регулятора гибкие шланги к инструменту - распылителям, шлифмашинкам и т.д. Воздух расходуется инструментом на произведение работы, и снова проходит по описываемому рабочему циклу.

Важно отметить, что только тогда, когда воздух течет по указанному циклу, работа может производиться, а энергия расходоваться. Поэтому сохраненная энергия станет меньше, и давление понизится, поскольку энергия используется.

Точно так же, если имеются какие-то препятствия для протекания воздуха, в т.ч. посредством введения дополнительных частей в наш цикл, тогда необходимо проделать определенные мероприятия, чтобы преодолеть эти затруднения. Больше таких препятствий на пути движения воздуха, больше потребление энергии, больше снижение давления сжатого воздуха в системе.

Эти препятствия могут быть разнообразны– сами металлические воздухопроводы, гибкие шланги, резьбовые и быстросъемные соединения, воздушные фильтры, воздушные регуляторы и конечно любой фактически используемый инструмент. Во всех случаях такие ограничения, по определению, препятствует потоку воздуха, уменьшая размер прохода, доступного для его протекания. Давайте рассмотрим каждый из этих компонентов воздушной циркуляционной системы отдельно, чтобы узнать, как выбрать лучшее оборудование.

Воздушные компрессоры

Это - машина, которая поставляет сжатый воздух с давлением и в объеме, необходимым для снабжения потребляющего оборудования. Компрессор потребляет атмосферный воздух при его естественном значении и сжимает его к более высокому давлению.

Современные конструкции компрессоров имеют большое разнообразие типов, разработанных, чтобы удовлетворить требования различных пользователей. Они могут быть снабжены автономным электрическим мотором или быть как отдельная мобильная единица, оборудованная бензиновым двигателем, ресивером и охладителем. Такое оборудование может быть применимо как для легких, так и для тяжелых условий эксплуатации, и иметь пределы мощности от 0,2 до тысяч лошадиных сил (л.с.). Также они бывают для бытового или индустриального использования.

Отметьте: Такой параметр как «Лошадиные силы (л.с.)» мы применяем для обозначения мощности в отношении электрического, бензинового или дизельного двигателя, которые питают компрессор. Существует альтернативная единица мощности – киловатт (кВт). 1л.с. = 0,75 кВт

Сжатый воздух - дорогая форма энергии по сравнению с электричеством, паром или гидроэнергией. Следовательно, воздушные компрессоры должны иметь хорошую эффективность. Так как компрессор разработан, чтобы поддержать необходимый объем воздуха, его эффективность называют Объемной Эффективностью. Чтобы определить это лучше, мы должны рассмотреть некоторые моменты в работе компрессора.

Работа компрессора выражается в соответствии с двумя понятиями:

1. Объем

Это количество воздуха, который компрессор выдает к концу фазы сжатия. Количество воздуха зависит от конфигурации и типа конструкции компрессора, размера воздушного цилиндра и оборотов его двигателя. Например, если цилиндр поршневого компрессора имеет размер 0,03 м3, двигатель 500 об/мин, объем произведенного воздуха в этом случае будет равен 15 м3/мин. На самом деле такой объем воздуха величина теоретическая, которая получается при 100 % эффективности компрессора. Однако, как у любой другой машины, эта эффективность гораздо меньше 100 % из-за таких потерь как нагрев, трение, утечка и т.д.

2. Свободная воздушная поставка (FAD)

Это фактический объем произведенного воздуха (в м3/мин), которое производит компрессор. Такое количество воздуха, пригодного для потребления, получается всегда меньше чем конструктивная производительность компрессора. Степень их соотношения, выражается как:

Объемная Эффективность = отношение FAD к Объему.

Например. Объем произведенного воздуха - 3 м3/мин: FAD - 1,5 м3/мин = Объемная Эффективность = 50 %

Вы должны понять, что самый лучший компрессор является и самым эффективным. Следовательно, лучший - тот, который работает с наименьшим количеством воздушных потерь, и имеет эффективность от 80 % или выше. Компрессоры – оборудование, изготовленное с высокой точностью и тщательностью, поэтому опытный совет специалиста при покупке никогда не помешает.

Главные моменты, на которые необходимо обратить внимание, выбирая компрессор:

1. Производимое давление (в PSI, барах или атмосферах)

2. Объем поставки воздуха (м3/мин или л/мин)

Важно иметь в виду, что стоимость получаемого для потребления сжатого воздуха совсем не равна цене компрессора непосредственно, а в основном включает в себя различные эксплуатационные расходы (например, на электричество).

Компрессоры, естественно, при работе могут нагреваться или охлаждаться. Фактически сам физический процесс сжатия приводит к повышению температуры сжимаемого воздуха. Компрессор, который остается в процессе работы самым прохладным – имеет самую высокую эффективность. Поэтому, тот компрессор, который никогда не очищается из пыли, грязи или осевшей краски, имеет повышенную изоляцию от удаления излишнего тепла и, естественно, увеличивает температуру своих рабочих поверхностей, и следственно, низкую эффективность.

Типы воздушных компрессоров

Все компрессоры, используемые в окрасочном производстве, являются объемного типа, то есть, определенный объем воздуха, помещенный в замкнутое пространство, сжимается до заданного значения повышенного давления. В зависимости от размера и вида выполняемой работы, существуют несколько различных типов компрессоров.

Диафрагменные компрессоры

Их применение ограничено рынком потребления - т.н. «сделай сам». Это, как правило довольно маленькие, переносные машины с низкими характеристиками. Питающиеся от однофазной сети 220В, эти довольно дешевые компрессоры имеют маленькую выходную мощность (типично 0,18-0,75 кВт), очень небольшую производительность (28-112 л/мин). Из-за их простого устройства они имеют не более чем 60%-ую эффективность.

Поршневые компрессоры

Доступные в большом диапазоне размеров и мощностей, они - самый популярный тип компрессоров, используемые во всем мире. Их прочная и довольно простая конструкция и сделала их чрезвычайно популярными.

Имеются стационарные и мобильные версии, мощность варьируется в пределах 0,4-9 кВт. Однако более мощные компрессоры имеют только промышленное исполнение. Поршневые компрессоры имеют более высокую эффективность - в пределах 65-75 %.

Турбинные компрессоры

Это машины, в которых в неподвижном цилиндрическом кожухе, крутиться с большой скоростью лопастный ротор. Имеются конструктивные исполнения смазываемые и несмазываемые. В таких компрессорах практически отсутствует явление пульсации. Это идеально подходящий компрессор для производства больших объемов воздуха для крупных производств. Они бывают обычно стационарного типа, питаются от 3-х фазной электрической сети, имеют мощность в пределах 2-30 кВт. Хотя такие компрессоры имеют большие эксплуатационные издержки, чем поршневые, их малошумность и высокая эффективность (70-80 %) дают неплохую экономичность и популярность.

Винтовые компрессоры

Это машины, в которых два сопряженных ротора винтовой или спиральной конструкции, при совместном вращении создают разницу давлений воздуха, сжимая его до определенного значения. Имея такие неплохие характеристики, как малошумность, малую пульсацию и высокую эффективность (95-98 %), они обычно расцениваются как самые лучшие, но и самые дорогие компрессоры, имеющиеся в настоящее время. Имеют широкие мощностные пределы, большие, чем у других типов компрессоров (3,75-450 кВт).


Уход за воздушными компрессорами

Конструкция современных компрессоров придает им очень высокую эффективность и долгий срок службы, при условии, что они регулярно проверяются и быстро восстанавливаются, когда это необходимо. В то время как в крупных производствах всегда имеется обученный квалифицированный персонал для технического обслуживания компрессоров, более мелкие производства должны обязательно вступать в контакт по вопросам обслуживания с сервисными службами производителей компрессоров или их дилеров.

Обычно ежедневные работы для любого пользователя компрессора включают:

a) удаление накопленной жидкости из ресиверов и пульсационных камер

б) проверка уровней смазки в картерах двигателей или системах охлаждения

в) проверка фильтров заборного отверстия и выходного штуцера воздуха на степень загрязнения.

При всех работах обязательно необходимо следовать рекомендациям изготовителя компрессора или его поставщика.

Осушители сжатого воздуха

Как и компрессоры, они - специализированные части оборудования, которые требуют профессионального выбора и обслуживания для получения лучших результатов. Удаление влаги из воздуха очень важно для получения качественного результата при окраске. Кроме того, удаление влаги предотвращает коррозию и разрушение лопастей воздушных моторов в пневматических шлифовальных инструментах.

Осушители удалят влагу до определенного уровня, называемого «Точкой росы». Это – наименьшая температура, до которой воздух должен быть охлажден, чтобы началось выделение влаги из него.

Сегодня существует два основных типов осушителей:

Рефрижераторные осушители

В этом типе осушителей, поступающий воздух охлаждается до появления испарений влаги, содержащейся в нем - типично в области низких температур, только выше точки замерзания воды. Чем ниже температура, тем больше влажности будет выделяться. Система очень напоминает в работе домашний холодильник. Этот тип осушения является непрерывным процессом, имеет автоматическую систему отвода, чтобы постоянно избавляться от выделяемой влаги.

Поглотительные осушители

Они представляют собой контейнер, в котором содержится определенное количество влагопоглощающего реагента, например, селикогеля или активированной окиси алюминия, которые имеют способность обезвоживать воздух или другой газ. Поток сжатого воздуха, проходя через гранулы реагента, освобождается от влаги, подается на инструменты, однако при этом, не снижает свою начальную температуру. Недостаток такого типа осушителей - невозможность рециркуляции или восстановления реагента, как только они полностью насыщаются влагой. Поэтому необходимо тщательно следить за состоянием реагентов и вовремя заменять контейнеры.

Существуют более дорогие и большие версии этого типа осушителей, которые имеют в своем составе оборудование для рециркуляции реагентов, встроенное в контейнеры. При этом используется два рабочих цилиндра - один, чтобы удалять влагу, другой одновременно перерабатывает и восстанавливает реагент. Это позволяет проводить удаление влаги непрерывно в течение рабочего дня. Самый популярный метод рециркуляции - использование специального нагревателя, который осушает сам реагент. Поскольку этот метод для сушки использует поглотительный процесс, а не процесс осаждения, точка росы может быть в пределах -1°С… -10°С.

Должно быть отмечено, что оба рассмотренных типов осушителей разработаны только для удаления влаги. Они не удаляют такие вещества, содержащиеся в воздухе как угарный газ, углекислый газ, углеводороды или даже частички пыли и грязи. Чтобы устранит эти типы загрязнений, необходимы другие меры и другое оборудование. Кроме того, удаление слишком много влаги из воздуха, предназначенного для дыхания, столь же плохо. Поэтому эффективность применения того или иного типа осушителей должна быть изучены на стадии комплектации оборудования для приготовления сжатого воздуха.

Ресиверы сжатого воздуха

Это оборудование служит для поглощения пульсаций в выходящей линии от компрессора, приспосабливает поток воздуха к линиям потребления и служит резервуаром для сжатого воздуха независимо от работы компрессора. Чтобы выбрать необходимую вместимость ресивера необходимо принять во внимание производительность компрессора и требования к потреблению воздуха. Как правило, для определения характеристик ресивера, принимают зависимость объема ресивера (в литрах) от производительности компрессора (литры в секунду). Она эмпирически составляет: Vr (л) = 6…10 ПрК (л/с)

Еще одна особенность ресивера - то, что он выделяет влагу из воздуха. Поэтому ресивер должен соответственно ежедневно освобождаться от накапливаемой влаги. Ресивер необходимо размещать в самом прохладном месте производства. Он должен быть оснащен вспомогательным клапаном давления, манометром, инспекционными отверстиями, сливным краном, опознавательными знаками. Также необходимо обеспечить достаточный внешний доступ к ресиверу для обслуживания и осмотра.

Трубопроводы подачи сжатого воздуха

Традиционно, производственные цеха, оснащаются для снабжения сжатым воздухом в основном металлическими трубопроводами, особенно на большие расстояния. Длинные гибкие шланги для этого не рекомендуются из-за возможности их быстрого износа или возникновения протечки. Но сегодня, трубопроводы воздуха могут быть изготовлены в основном из нержавеющей или гальванизированной стали, пластика ABS, медных сплавов.

Рабочий диаметр трубопроводов никогда не должен быть меньшим, чем на размер выходного штуцера компрессора или ресивера. Наибольшие внутренние диаметры и по возможности самая короткая длина трубопроводов, будут гарантировать минимальные потери давления и энергии. Кроме того, изгибы трубопровода должны быть с самым большим возможным радиусом для уменьшения потерь. Маршруты трубопроводов от компрессора до потребителей должны быть не сложными и простыми насколько возможно, иметь наименьшее количество изгибов, пересечений, врезок или соединений. Ниже в таблице представлены рекомендации по выбору воздушных трубопроводов.

Последние материалы раздела:

Сколько курица сидит на яйцах
Сколько курица сидит на яйцах

Существует два метода высиживания цыплят: инкубаторный и с использованием тела живой птицы. Курица наседка (также называемая клушей или квочкой)...

По педагогике и коррекционной педагогике
По педагогике и коррекционной педагогике

работает с «особенными» детьми, имеющими проблемы физического или психического характера. Они нуждаются не только в обучении и воспитании, но и...

Гаметофит—гаплоидная многоклеточная фаза в жизненном цикле растений и водорослей, развивающаяся из спор и производящая половые клетки, или гаметы Что такое гаметофит у мхов
Гаметофит—гаплоидная многоклеточная фаза в жизненном цикле растений и водорослей, развивающаяся из спор и производящая половые клетки, или гаметы Что такое гаметофит у мхов

В жизнен цикле кажд раст-я, имеющего половое размнож-е, существ смена ядерных фаз гаплоидной и диплоидной. Переход от гаплоидн сост-я к...