Что такое квантовая телепортация? Отвечает физик. Квантовая телепортация Эксперимент по квантовой телепортации

В июне 2013 года группе физиков под руководством Юджина Ползика удалось провести эксперимент по детерминистской телепортации коллективного спина 10 12 атомов цезия на полметра. Эта работа попала на обложку Nature Physics . Почему это действительно важный результат, в чем заключались экспериментальные сложности и, наконец, что такое «детерминистская квантовая телепортация» «Ленте.ру» рассказал сам профессор и член исполнительного комитета Российского квантового центра (РКЦ) Юджин Ползик.

«Лента.ру»: Что такое «квантовая телепортация»?

Чтобы понять, чем квантовая телепортация отличается от того, что мы видим, например, в сериале Star Trek, нужно понимать одну простую вещь. Наш мир устроен таким образом, что, если мы хотим что-то узнать о чем угодно, то в мельчайших деталях мы всегда будем делать ошибки. Если мы, допустим, возьмем обычный атом, то одновременно измерить скорость движения и позицию электронов в нем не удастся (это то, что называется принципом неопределенности Гейзенберга). То есть нельзя представить результат в виде последовательности нулей и единиц.

В квантовой механике, однако, уместно задать такой вопрос: даже если результат нельзя записать, то, может быть, его все равно можно переслать? Этот процесс пересылки информации за пределами точности, допустимой классическими измерениями, и называется квантовой телепортацией.

Когда впервые появилась квантовая телепортация?

Юджин Ползик, Профессор института Нильса Бора, Университет Копенгагена (Дания), член исполнительного комитета Российского квантового центра

B 1993 году шесть физиков - Беннет, Броссар и другие - написали в Physical Review Letters статью (pdf), в которой и придумали замечательную терминологию для квантовой телепортации. Замечательную еще и потому, что на публику эта терминология с тех пор оказывает исключительно положительное влияние. В их работе протокол передачи квантовой информации был описан чисто теоретически.

В 1997 году была осуществлена первая квантовая телепортация фотонов (на самом деле экспериментов было два - группы Заиллингера и Де Mартини; Заиллингера просто больше цитируют). В работе они телепортировали поляризацию фотонов - направление этой поляризации суть квантовая величина, то есть такая величина, которая принимает различные значения с разной вероятностью. Как оказалось, измерить эту величину нельзя, а вот телепортировать можно.

Тут надо вот что учесть: в экспериментах Заиллингера и Де Mартини телепортация была вероятностной, то есть работала с некоторой вероятностью успеха. Им удалось достичь вероятности не меньше 67 (2/3) процентов - то, что по-русски уместно назвать классическим пределом.

Телепортация, о которой идет речь, получила название вероятностной. В 1998 году мы в Калифорнийском технологическом институте сделали так называемую детерминистскую телепортацию. У нас телепортировались фаза и амплитуда светового импульса. Они, как говорят физики, так же как скорость и местоположение электрона, являются «некоммутирующими переменными», поэтому подчиняются уже упоминавшемуся принципу Гейзенберга. То есть не допускают одновременное измерение.

Атом можно представить себе в виде маленького магнита. Направление этого магнита и есть направление спина. Управлять ориентацией такого «магнита» можно с помощью магнитного поля и света. У фотонов - частиц света - тоже есть спин, который еще называют поляризацией.

В чем разница между вероятностной и детерминистской телепортациями?

Чтобы ее объяснить, сперва надо чуть подробнее поговорить про телепортацию. Представьте, что в пунктах A и B расположены атомы, для удобства - по одной штуке. Мы хотим телепортировать, скажем, спин атома из A в B, то есть привести атом в пункте B в такое же квантовое состояние, что и атом A. Как я говорил уже, для этого одного классического канала связи недостаточно, поэтому потребуются два канала - один классический, другой квантовый. В качестве переносчика квантовой информации у нас выступают кванты света.

Сначала мы пропускаем свет через атом B. Происходит процесс запутывания, в результате чего между светом и спином атома устанавливается связь. Когда свет приходит в А, то можно считать, что между двумя пунктами установился квантовый канал связи. Свет, проходя через A, считывает информацию с атома и после этого свет ловится детекторами. Именно этот момент можно считать моментом передачи информации по квантовому каналу.

Теперь остается передать результат измерений по классическому каналу в B, чтобы там, на основе этих данных, выполнили некоторые преобразования над спином атома (например, поменяли магнитное поле). В результате, в точке B атом получает спиновое состояние атома A. Телепортация завершена.

В реальности, однако, фотоны, путешествуя по квантовому каналу, теряются (например, если этот канал - обычное оптоволокно). Главное отличие между вероятностной и детерминистской телепортациями как раз и заключается в отношении к этим потерям. Вероятностной все равно, сколько там потерялось - если из миллиона фотонов хотя бы один дошел, то уже хорошо. В этом смысле, конечно, она больше подходит для пересылки фотонов на большие расстояния (в настоящее время рекорд составляет 143 километра - прим. «Ленты.ру» ). Детерминистская же телепортация к потерям относится хуже - вообще говоря, чем выше потери, тем хуже качество телепортации, то есть на принимающем конце провода получается не совсем исходное квантовое состояние - но зато она работает каждый раз, когда, если сказать грубо, нажимаешь на кнопку.

Запутанное состояние света и атомов по сути представляет собой запутанное состояние их спинов. Если спины, скажем, атома и фотона запутаны, то измерения их параметров, как говорят физики, коррелируют. Это означает, что, например, если измерение спина фотона показало, что он направлен вверх, то спин атома будет направлен вниз; если спин фотона оказался направлен вправо, то спин атома будет направлен влево и так далее. Фокус заключается в том, что до измерения ни у фотона, ни у атома определенного направления спина нет. Как получается, что, несмотря на это, они коррелируют? Тут как раз и должна начать «кружиться голова от квантовой механики», как говорил Нильс Бор.

Юджин Ползик

И как у них различаются сферы применения?

Вероятностная, как я говорил, подходит для передачи данных на большие расстояния. Скажем, если в будущем мы захотим построить квантовый интернет, то нам потребуется именно телепортация такого типа. Что касается детерминистской, то она может быть полезна для телепортации каких-нибудь процессов.

Тут сразу надо пояснить: сейчас такой прямо уж четкой границы между этими двумя видами телепортации нет. Например, в Российском квантовом центре (и не только в нем), разрабатываются «гибридные» системы квантовых коммуникаций, где частично используется вероятностный, а частично - детерминистский подходы.

В нашей же работе телепортация процесса была такой, знаете, стробоскопической - речь о непрерывной телепортации пока не идет.

То есть это дискретный процесс?

Да. На самом деле телепортация состояния, она, естественно, может произойти только один раз. Одна из вещей, которые квантовая механика запрещает, - это клонирование состояний. То есть если вы телепортировали что-то, то вы это уничтожили.

Расскажите о том, что удалось сделать вашей группе.

У нас был ансамбль атомов цезия, и телепортировали мы коллективный спин системы. Газ у нас находился под воздействием лазера и магнитного поля, поэтому спины атомов были ориентированы примерно одинаково. Неподготовленный читатель может это представлять себе так - наш коллектив есть большая магнитная стрелка.

У стрелки есть неопределенность направления (это и значит, что спины ориентированы «примерно» одинаково), та самая гейзенбергова. Измерить направление этой неопределенности точнее невозможно, а вот телепортировать положение - вполне. Величина этой неопределенности составляет единицу на квадратный корень из числа атомов.

Тут важно сделать вот какое отступление. Моя любимая система - это газ атомов при комнатной температуре. Проблема с этой системой такая: при комнатных температурах квантовые состояния быстро разваливаются. У нас же, однако, эти спиновые состояния живут очень долго. И удалось этого добиться благодаря сотрудничеству с учеными из Санкт-Петербурга.

Они разработали покрытия, которые по-научному называются алкеновыми. По сути это что-то очень похожее на парафин. Если напылить такое покрытие на внутреннюю часть стеклянной ячейки с газом, то молекулы газа летают (со скоростью 200 метров в секунду) и сталкиваются со стенками, но ничего с их спином не происходит. Порядка миллиона столкновений они так могут выдержать. У меня такое визуальное представление этого процесса: покрытие - это как целый лес лиан, очень больших, а спину для того, чтобы испортиться, нужно свой спин кому-то передать. А там это все такое большое и связанное, что передавать некому, поэтому он туда заходит, побарахтается и вылетает обратно, и ничего с ним не происходит. С этими покрытиями мы начали работать лет 10 назад. Сейчас их усовершенствовали и доказали, что с ними можно работать и в квантовой области.

Так вот, вернемся к нашим атомам цезия. Они были при комнатной температуре (это хорошо еще и потому, что алкеновые покрытия высоких температур не выдерживают, а чтобы получить газ, обычно надо что-то испарить, то есть нагреть).

Вы телепортировали спин на полметра. Такое небольшое расстояние - принципиальное ограничение?

Нет, конечно. Как я говорил, детерминистская телепортация не терпит потерь, поэтому лазерные импульсы у нас шли по открытому пространству - если бы мы загоняли их обратно в оптоволокно, то неизменно были бы какие-то потери. Вообще говоря, если там футуризмом заниматься, то вполне можно таким же лучом стрелять в спутник, который будет переправлять сигнал куда надо.

Вы говорили, что в планах у вас непрерывная телепортация?

Да. Только тут непрерывность следует понимать в нескольких смыслах. С одной стороны у нас в работе 10 12 атомов, поэтому дискретность направления коллективного спина настолько крошечная, что можно описывать спин непрерывными переменными. В этом смысле и наша телепортация была непрерывной.

С другой стороны, если процесс меняется во времени, то можно говорить о его непрерывности во времени. Значит, я могу делать следующее. У этого процесса есть, допустим, какая-то временная постоянная - допустим, он происходит за миллисекунды, и вот я взял и разбил его на микросекунды, и «бум» после первой микросекунды телепортировал; потом придется вернуть в начальное состояние.

Каждая такая телепортация, конечно, уничтожает телепортируемое состояние, однако внешнее возбуждение, которое этот процесс вызывает, не трогает. Поэтому по сути мы телепортируем некий интеграл. Этот интеграл мы можем «развернуть» и узнать что-то о внешних возбуждениях. Теоретическая работа, в которой все это предлагается, только что вышла в Physical Review Letters .

На самом деле такое телепортирование туда-сюда можно использовать для очень глубоких вещей. У меня здесь чего-то происходит, и здесь чего-то происходит, и с помощью телепортационного канала я могу симулировать взаимодействие - как будто бы эти два спина, которые никогда между собой не взаимодействовали, в действительности взаимодействуют. То есть такая квантовая симуляция.

А квантовая симуляция - это то, отчего все сейчас прыгают. Вместо того чтобы факторизовать миллионные цифры, можно просто симулировать. Вспомнить тот же D-wave.

Детерминистская телепортация может использоваться в квантовых компьютерах?

Может, но тогда необходимо будет телепортировать кубиты. Тут уже потребуются всякие алгоритмы коррекции ошибок. А их сейчас только начинают разрабатывать.

Квантовая телепортация является одним из наиболее важных протоколов в квантовой информации. Основываясь на физическом ресурсе запутанности, она служит главным элементом различных информационных задач и представляет собой важную составную часть квантовых технологий, играя ключевую роль в дальнейшем развитии квантовых вычислений, сетей и коммуникации.

От научной фантастики до открытия ученых

Прошло уже более двух десятилетий с момента открытия квантовой телепортации, которая, возможно, является одним из самых интересных и захватывающих следствий «странности» квантовой механики. До того как были сделаны эти великие открытия, данная идея принадлежала области научной фантастики. Впервые придуманный в 1931 г. Чарльзом Х. Фортом термин «телепортация» с тех пор используется для обозначения процесса, посредством которого тела и объекты передаются из одного места в другое, на самом деле не преодолевая расстояние между ними.

В 1993 году была опубликована статья с описанием протокола квантовой информации, получившего название «квантовая телепортация», который разделил несколько из перечисленных выше признаков. В нем неизвестное состояние физической системы измеряется и впоследствии воспроизводится или «повторно собирается» в удаленном месте (физические элементы исходной системы остаются в месте передачи). Этот процесс требует классических средств связи и исключает сверхсветовую коммуникацию. Для него необходим ресурс запутанности. На самом деле телепортацию можно рассматривать как протокол квантовой информации, который наиболее четко демонстрирует характер запутанности: без его присутствия такое состояние передачи не было бы возможным в рамках законов, которыми описывается квантовая механика.

Телепортация играет активную роль в развитии науки об информации. С одной стороны, протокол, играющий решающую роль в развитии формальной квантовой теории информации, а с другой он является фундаментальной составляющей многих технологий. Квантовый повторитель - ключевой элемент коммуникации на большие расстояния. Телепортация квантовых переключателей, вычисления на основе измерений и квантовые сети - все являются ее производными. Она используется и в качестве простого инструмента для изучения «экстремальной» физики, касающейся временных кривых и испарения

Сегодня квантовая телепортация подтверждена в лабораториях во всем мире с использованием множества различных субстратов и технологий, в том числе фотонных кубитов, ядерного магнитного резонанса, оптических мод, групп атомов, захваченных атомов и полупроводниковых систем. Выдающиеся результаты были достигнуты в области дальности телепортации, предстоят эксперименты со спутниками. Кроме того, начались попытки масштабирования до более сложных систем.

Телепортация кубитов

Квантовая телепортация была впервые описана для двухуровневых систем, так называемых кубитов. Протокол рассматривает две удаленные стороны, именуемые Алисой и Бобом, которые разделяют 2 кубита, А и В, находящиеся в чистом запутанном состоянии, также называемые парой Белла. На входе Алисе дается еще один кубит а, чье состояние ρ неизвестно. Затем она выполняет совместное квантовое измерение, называемое обнаружением Белла. Оно переносит а и А в одно из четырех состояний Белла. В результате состояние входного кубита Алисы при измерении исчезает, а кубит Боба B одновременно проецируется на Р † k ρP k . На последнем этапе протокола Алиса передает классический результат ее измерения Бобу, который применяет оператор Паули P k для восстановления исходного ρ.

Начальное состояние кубита Алисы считается неизвестным, так как в противном случае протокол сводится к его удаленному измерению. Кроме того, оно само по себе может быть частью более крупной составной системы, разделенной с третьей стороной (в этом случае успешная телепортация требует воспроизведения всех корреляций с этой третьей стороной).

Типичный эксперимент по квантовой телепортации принимает исходное состояние чистым и принадлежащим к ограниченному алфавиту, например, шести полюсам сферы Блоха. В присутствии декогеренции качество реконструированного состояния может быть количественно выражено точностью телепортации F ∈ . Это точность между состояниями Алисы и Боба, усредненные по всем результатами обнаружения Белла и исходному алфавиту. При малых значениях точности существуют методы, позволяющие провести несовершенную телепортацию без использования запутанного ресурса. Например, Алиса может напрямую измерить свое исходное состояние, посылая результаты Бобу для подготовки результирующего состояния. Такую стратегию измерения-подготовки называют «классической телепортацией». Она имеет максимальную точность F class = 2/3 для произвольного входного состояния, что эквивалентно алфавиту взаимно несмещенных состояний, таких как шесть полюсов сферы Блоха.

Таким образом, четким признаком использования квантовых ресурсов является значение точности F> F class .

Не кубитом единым

Как утверждает телепортация не ограничивается кубитами, она может включать многомерные системы. Для каждого конечного измерения d можно сформулировать идеальную схему телепортации, используя базис максимально запутанных векторов состояния, который может быть получен из заданного максимально запутанного состояния и базиса {U k } унитарных операторов, удовлетворяющих tr(U † j U k) = dδ j,k . Такой протокол можно построить для любого конечноразмерного гильбертового пространства т. н. дискретно-переменных систем.

Кроме того, квантовая телепортация может распространяться и на системы с бесконечномерным гильбертовым пространством, называемыми непрерывно-переменными системами. Как правило, они реализуются оптическими бозонными модами, электрическое поле которых можно описать квадратурными операторами.

Скорость и принцип неопределенности

Какова скорость при квантовой телепортации? Информация передается на скорости, аналогичной скорости передачи того же количества классической - возможно, со Теоретически она может быть использована таким образом, каким классическая не может - например, в квантовых вычислениях, где данные доступны только получателю.

Нарушает ли квантовая телепортация В прошлом идея телепортации не очень серьезно воспринималась учеными, потому что считалось, что она нарушает принцип, запрещающий любому измерительному или сканирующему процессу извлекать всю информацию атома или другого объекта. В соответствии с принципом неопределенности, чем точнее объект сканируется, тем больше на него влияет процесс сканирования, пока не будет достигнута точка, когда исходное состояние объекта нарушится до такой степени, что больше нельзя будет получить достаточного количества информации для создания точной копии. Это звучит убедительно: если человек не может извлечь сведения из объекта для создания идеальной копии, то последняя сделана быть не может.

Квантовая телепортация для чайников

Но шесть ученых Жиль Брассар, Клод Крепо, Ричард Джоса, Ашер Перес и Уильям Вутерс) нашли способ обойти эту логику, используя знаменитую и парадоксальную особенность квантовой механики, известную как эффект Эйнштейна-Подольского-Розена. Они нашли способ отсканировать часть информации телепортируемого объекта А, а остальную непроверенную часть посредством упомянутого эффекта передать другому объекту С, в контакте с А никогда не пребывавшему.

В дальнейшем, путем применения к C воздействия, зависящего от отсканированной информации, можно ввести С в состояние А до сканирования. Сам А уже не в том состоянии, так как полностью изменен процессом сканирования, поэтому достигнутое является телепортацией, а не репликацией.

Борьба за дальность

  • Первая квантовая телепортация была проведена в 1997 г. почти одновременно учеными из Университета Инсбрука и Университета Рима. Во время эксперимента исходный фотон, обладающий поляризацией, и один из пары запутанных фотонов подверглись изменению таким образом, что второй фотон получил поляризацию исходного. При этом оба фотона находились на расстоянии друг от друга.
  • В 2012 г. состоялась очередная квантовая телепортация (Китай, Университет науки и технологии) через высокогорное озеро на расстояние 97 км. Команде ученых из Шанхая во главе с Хуаном Иинем удалось разработать наводящий механизм, который позволил точно нацелить пучок.
  • В сентябре того же года была проведена рекордная квантовая телепортация на 143 км. Австрийские ученые из Академии наук Австрии и Университета Вены под руководством Антона Цайлингера успешно передали квантовые состояния между двумя Канарскими островами Ла Палма и Тенерифе. В эксперименте использовались две оптические линии связи на открытом пространстве, квантумная и классическая, частотно некоррелированная поляризационно запутанная пара фотонов-источников, сверхнизкошумные однофотонные детекторы и сцепленная тактовая синхронизация.
  • В 2015 г. исследователи из американского Национального института стандартов и технологии впервые произвели передачу информации на расстояние более 100 км по оптоволокну. Это стало возможным благодаря созданным в институте однофотонным детекторам, использующим сверхпроводящие нанопровода из силицида молибдена.

Понятно, что идеальной квантовой системы или технологии пока не существует и великие открытия будущего еще впереди. Тем не менее можно попытаться определить возможных кандидатов в конкретных областях применения телепортации. Подходящая их гибридизация при условии совместимой базы и методов может обеспечить наиболее перспективное будущее для квантовой телепортации и ее применений.

Короткие дистанции

Телепортация на короткие расстояния (до 1 м) как подсистема квантовых вычислений перспективна на полупроводниковых устройствах, лучшим из которых является схема QED. В частности, сверхпроводящие трансмоновые кубиты могут гарантировать детерминированную и высокоточную телепортацию на чипе. Они также позволяют прямую подачу в режиме реального времени, которая выглядит проблематичной на фотонных чипах. К тому же они обеспечивают более масштабируемую архитектуру и лучшую интеграцию существующих технологий по сравнению с предыдущими подходами, такими как захваченные ионы. В настоящее время единственным недостатком этих систем, по-видимому, является их ограниченное время когерентности (<100 мкс). Эта проблема может быть решена с помощью интегрирования схемы QED с полупроводниковыми спин-ансамблевыми ячейками памяти (с азотно-замещенными вакансиями или легированными редкоземельными элементами кристаллами), которые могут обеспечить длительное время когерентности для квантового хранения данных. В настоящее время данная реализация является предметом приложения больших усилий научного сообщества.

Городская связь

Телепортационная связь в масштабе города (несколько километров) могла бы разрабатываться с использованием оптических мод. При достаточно низких потерях эти системы обеспечивают высокие скорости и ширину полосы. Они могут быть расширены от настольных реализаций до систем средней дальности, действующих через эфир или оптоволокно, с возможной интеграцией с ансамблевой квантовой памятью. Более дальние расстояния, но с более низкими скоростями могут быть достигнуты с помощью гибридного подхода или путем разработки хороших ретрансляторов, основанных на негауссовских процессах.

Дальняя связь

Междугородняя квантовая телепортация (более 100 км) является активной областью, но по-прежнему страдает от открытой проблемы. Кубиты поляризации - лучшие носители для низкоскоростной телепортации по длинным оптоволоконным линиям связи и через эфир, но в настоящее время протокол является вероятностным из-за неполного обнаружения Белла.

Хотя вероятностная телепортация и запутанности приемлемы для таких задач, как дистилляция запутывания и квантовая криптография, но это явно отличается от коммуникации, в которой входная информация должны быть полностью сохранена.

Если принять этот вероятностный характер, то спутниковые реализации находятся в пределах досягаемости современных технологий. Кроме интеграции методов отслеживания, основной проблемой становятся высокие потери, вызванные расплыванием пучка. Это может быть преодолено в конфигурации, где запутанность распределена от спутника до наземных телескопов с большой апертурой. Предполагая апертуру спутника в 20 см при 600-км высоте и 1-м диафрагму телескопа на земле, можно ожидать около 75 дБ потерь в канале нисходящей линии связи, что меньше, чем 80 дБ потерь на уровне земли. Реализации «земля-спутник» или «спутник-спутник» являются более сложными.

Квантовая память

Будущее использование телепортации в качестве составной части масштабируемой сети прямо зависит от ее интеграции с квантовой памятью. Последняя должна обладать превосходным, с точки зрения эффективности конверсии, интерфейсом «излучение-материя», точностью записи и считывания, временем хранения и пропускной способностью, высокой скоростью и емкостью запоминающего устройства. В первую очередь это позволит использовать ретрансляторы для расширения коммуникации далеко за рамки прямой передачи с использованием кодов коррекции ошибок. Развитие хорошей квантовой памяти позволило бы не только распределить запутывание по сети и телепортационную коммуникацию, но и связно обрабатывать хранимую информацию. В конечном итоге, это может превратить сеть во всемирно распределенный или основу для будущего квантового интернета.

Перспективные разработки

Атомные ансамбли традиционно считались привлекательными из-за их эффективного преобразования «свет-материя» и их миллисекундных сроков хранения, которые могут достигать 100 мс, необходимых для передачи света в глобальном масштабе. Тем не менее более перспективные разработки сегодня ожидаются на основе полупроводниковых систем, где отличная спин-ансамблевая квантовая память прямо интегрируется с масштабируемой архитектурой схемы QED. Эта память не только может продлить время когерентности цепи QED, но и обеспечить оптико-микроволновой интерфейс для взаимопревращения оптико-телекоммуникационных и чиповых микроволновых фотонов.

Таким образом, будущие открытия ученых в области квантового интернета, вероятно, будут основаны на дальней оптической связи, сопряженной с полупроводниковыми узлами для обработки квантовой информации.

Возможность телепортации является одной из наиболее горячо обсуждаемых паранормальных и паранаучных проблем. Тем более, что она опирается сразу и на фантастические мистические представления, и на определённые научные достижения. Однако различные сообщения о том, что телепортация вот-вот будет достигнута на практике, являются лишь недобросовестным использованием информации о квантовой телепортации. Квантовая телепортация – это реальное физическое явление, вот только к телепортации из теорий мистиков и произведений фантастов она имеет лишь косвенное отношение.

Без Эйнштейна не обошлось

Практика телепортации предполагает передачу материи из одной точки пространства в другую без наличия непрерывной траектории движения. То есть невозможно проследить непрерывающуюся последовательность нахождения вещества в определённой точке в каждый последующий момент времени. Тем самым материя на время как бы исчезает, чтобы затем появиться уже в совсем другом месте. Ничего подобного в случае с квантовой телепортацией, конечно, не происходит. Она связана с особенными свойствами квантов и была впервые сформулирована на теоретическом уровне в 1930-е годы знаменитым Альбертом Эйнштейном.

Он предположил, что между двумя частицами может существовать канал связи из так называемых спутанных квантов, по которому возможна передача свойств от одной элементарной частицы к другой. Физически элементарные частицы при этом между собой не соприкасаются, то есть не контактируют. Свойство одной частицы отправляется через квант, при этом в точке отправления это свойство разрушается и исчезает, частица-отправитель этого свойства лишается. В свою очередь, на другой частице это свойство появляется, будучи «переправленным» через спутанные кванты. Ни энергия, ни сама материя при этом между частицами не «перепрыгивают», а скорость передачи свойств не превышает скорость света в вакууме. Таким образом, никакие физические законы не нарушаются и о реальной телепортации говорить нельзя. Характерно, что Эйнштейн не верил в практическую осуществимость даже этой своей теоретической модели, считая квантовую телепортацию следствием противоречивости самой квантовой теории.

Реализация на практике

Квантовая телепортация, известная также как ЭПР-эффект (названный так по фамилиям соавторов теоретической работы по данной теме – Эйнштейна, Подольского, Розена), считалась сугубо умозрительной на протяжении почти полувека. Но в 1980 году существования данного эффекта было подтверждено экспериментально. Была осуществлена так называемая телепортация фотонов, то есть передача свойств с одного фотона на другой. Первоначально учёные не могли найти объяснения такому явлению, которое противоречило законам физики. Однако затем вспомнили о сформулированном Эйнштейном и его коллегами принципе квантовой телепортации – и всё встало на свои места.

Причём особенность квантовой телепортации заключалась в возможности передачи свойств между элементарными частицами на значительные расстояния. Но одновременно выявились и различные сложности. Так, очень быстро выяснилось, что квантовая телепортация имеет характерные для любого канала связи ограничения – скорость передачи информации не может превышать максимальной скорости, доступной для данного конкретного канала. В лучшем случае она будет приближаться к скорости света в вакууме. К тому же квантовая телепортация не имела ничего общего с «классической» телепортацией, знакомой по фантастическим романам. Подобная передача энергии и материи из одной точки в другую по-прежнему не представляется возможной. Так что энтузиастам, жаждущим осуществления телепортации человека, придётся подождать. Очень может быть, что подождать бесконечно долго: даже при обнаружении способа телепортации материи сложно представить возможность телепортирования разумных существ и воссоздания на новом месте полноценного механизма сознания.

Эксперименты двигают науку

Квантовая телепортация получила широкое освещение в прессе в связи с последними достижениями в этом направлении японских учёных. В ходе различных экспериментов ими были достигнуты впечатляющие результаты. В первом случае опыт оказался весьма эффектным: исследователи смогли «телепортировать» квант света. По сути, это телепортация фотона – свет «разложили» по отдельным частицам-фотонам и с помощью канала связи спутанных квантов перенесли их в другую точку пространства, где снова собрали в световой пучок. Во втором случае была достигнута первая квантовая телепортация не между двумя, а между тремя фотонами. С точки зрения практических научных технологий это настоящий прорыв, открывающий реальные перспективы создания квантовых компьютеров. Эти компьютеры будут на порядки производительнее в скорости обработки данных, а также в их суммарном объёме.

Но японские эксперименты с квантовой телепортацией отнюдь не единственные, работа в этом направлении ведётся уже несколько десятилетий, но особенно активно в последние годы. Так, в 2004 году были осуществлены успешные опыты квантовой телепортации уже не между фотонами, а между атомами – в первом случае свойствами обменивались ионы атома кальция, во втором – ионы атома бериллия. В 2006 году квантовая телепортация была проведена между двумя разноприродными объектами, между атомами цезия, с одной стороны, и квантами лазерного излучения, с другой. С 2010 по 2012 годы учёные последовательно ставили впечатляющие рекорды расстояния квантовой телепортации: сначала в Китае свойства между фотонами были переданы на 16 километров, затем в Поднебесной достижение было увеличено до 97 километров, а после в Австрии исследователи добились телепортации на 143 километра.

Александр Бабицкий


Квантовая телепортация - это телепортирование не физических объектов, не энергии, а состояния. Но в данном случае состояния передаются таким образом, каким в классическом представлении это сделать невозможно. Как правило, для передачи информации о каком-то объекте требуется большое количество всесторонних измерений. Но они разрушают квантовое состояние, и у нас нет возможности повторно его измерить. Квантовая телепортация используется для того, чтобы передать, перенести некое состояние, обладая минимальной информацией о нем, не «заглядывая» в него, не измеряя и тем самым не нарушая.

Кубиты

Кубит - это и есть состояние, которое передается при квантовой телепортации. Квантовый бит находится в суперпозиции двух состояний. Классическое состояние находится, например, либо в состоянии 0, либо в состоянии 1. Квантовое находится в суперпозиции, и, что очень важно, пока мы его не измерим, оно не будет определено. Представим себе, что у нас был кубит на 30% - 0 и на 70% - 1. Если мы его измерим, мы можем получить как 0, так и 1. За одно измерение нельзя ничего сказать. Но если приготовить 100, 1000 таких одинаковых состояний и раз за разом их измерять, мы можем достаточно точно охарактеризовать это состояние и понять, что действительно там было 30% - 0 и 70% - 1.

Это пример получения информации классическим способом. Получив большое количество данных, адресат может воссоздать это состояние. Однако квантовая механика позволяет не готовить много состояний. Представим себе, что оно у нас есть только одно, уникальное, а второго такого нет. Тогда в классике передать его уже не получится. Физически, напрямую, это тоже не всегда возможно. А в квантовой механике мы можем использовать эффект запутанности.

Мы также используем явление квантовой нелокальности, то есть явление, которое невозможно в привычном для нас мире, для того чтобы здесь это состояние исчезло, а там появилось. Причем самое интересное, что применительно к тем же квантовым объектам существует теорема о неклонировании. То есть невозможно создать второе идентичное состояние. Надо уничтожить одно, чтобы появилось другое.

Квантовая запутанность

Что такое эффект запутанности? Это особым образом приготовленные два состояния, два квантовых объекта - кубита. Для простоты можно взять фотоны. Если эти фотоны разнести на большое расстояние, они будут коррелировать между собой. Что это значит? Представим себе, что у нас один фотон синий, а другой зеленый. Если мы их разнесли, посмотрели и у меня оказался синий, значит, у вас оказался зеленый, и наоборот. Или если взять коробку обуви, где есть правый и левый ботинок, незаметно их вытащить и в мешке отнести один ботинок вам, другой мне. Вот я открыл мешок, смотрю: у меня правый. Значит, у вас точно левый.

Квантовый случай отличается тем, что состояние, которое пришло ко мне до измерения, не синее и не зеленое - оно в суперпозиции синего и зеленого. После того как вы разделили ботинки, результат уже предопределен. Пока мешки несут, пока их еще не открыли, но уже точно понятно, что там будет. А пока квантовые объекты не измерены, еще ничего не решилось.

Если взять не цвет, а поляризацию, то есть направление колебаний электрического поля, можно выделить два варианта: вертикальная и горизонтальная поляризация и +45° - -45°. Если сложить вместе в равной пропорции горизонтальную и вертикальную, то получится +45°, если вычесть одну из другой, то -45°. Теперь представим, что точно так же один фотон попал ко мне, а другой к вам. Я посмотрел: он вертикальный. Значит, у вас горизонтальный. Теперь представим, что я увидел вертикальный, а вы посмотрели его в диагональном базисе, то есть посмотрели - он +45° или -45°, вы увидите с равной вероятностью тот ли иной исход. Но если я посмотрел в диагональном базисе и увидел +45°, то точно знаю, что у вас -45°.

Парадокс Эйнштейна - Подольского - Розена

Квантовая запутанность связана с фундаментальными свойствами квантовой механики и так называемым парадоксом Эйнштейна - Подольского - Розена. Эйнштейн так долго протестовал против квантовой механики, потому что считал, что природа не может со скоростью, большей скорости света, передавать информацию о состоянии. Мы же можем разнести фотоны очень далеко, например на световой год, а открывать одновременно. И мы все равно увидим эту корреляцию.

Но на самом деле теорию относительности это не нарушает, потому что информацию с помощью этого эффекта мы передать все равно не можем. Измеряется либо вертикальный, либо горизонтальный фотон. Но неизвестно заранее, какой именно он будет. Несмотря на то что нельзя передавать информацию быстрей скорости света, запутанность позволяет реализовать протокол квантовой телепортации. В чем он заключается? Рождается запутанная пара фотонов. Одна направляется к передатчику, другая - к приемнику. Передатчик производит совместное измерение целевого фотона, который он должен передать. И с вероятностью ¼ он получит результат OK. Он может сообщить об этом получателю, и получатель в этот момент узнает, что у него точно такое же состояние, как было у передатчика. А с вероятностью ¾ он получает другой результат - не то чтобы неуспешное измерение, а просто другой результат. Но в любом случае это полезная информация, которую можно передать получателю. Получатель в трех из четырех случаев должен произвести дополнительный поворот своего кубита, чтобы получить передаваемое состояние. То есть передается 2 бита информации, и при помощи них можно телепортировать сложное состояние, которое ими закодировать нельзя.

Квантовая криптография

Одна из главных сфер применения квантовой телепортации - это так называемая квантовая криптография. Идея этой технологии заключается в том, что одиночный фотон невозможно клонировать. Следовательно, мы можем передавать информацию в этом одиночном фотоне, и никто не сможет ее продублировать. Более того, при любой попытке кем-то узнать что-то об этой информации состояние фотона изменится или разрушится. Соответственно, любая попытка получить эту информацию посторонним будет замечена. Это можно использовать в криптографии, в защите информации. Правда, передается не полезная информация, а ключ, которым потом уже классически возможно абсолютно надежно передавать информацию.

У этой технологии есть один большой недостаток. Дело в том, что, как мы уже раньше говорили, создать копию фотона невозможно. Обычный сигнал в оптоволокне можно усилить. Для квантового случая усилить сигнал невозможно, так как усиление будет эквивалентно некоторому перехватчику. В реальной жизни, в реальных линиях передача ограничена расстоянием приблизительно до 100 километров. В 2016 году Российским квантовым центром была проведена демонстрация на линиях Газпромбанка, где показали квантовую криптографию на 30 километрах волокна в городских условиях.

В лаборатории мы способны показывать квантовую телепортацию на расстоянии до 327 километров. Но, к сожалению, большие расстояния непрактичны, потому что фотоны теряются в волокне и скорость получается очень низкая. Что делать? Можно поставить промежуточный сервер, который будет получать информацию, расшифровывать, потом снова зашифровывать и передавать дальше. Так делают, например, китайцы при строительстве своей сети квантовой криптографии. Такой же подход используют и американцы.

Квантовая телепортация в данном случае - это новый метод, который позволяет решить задачу квантовой криптографии и увеличить расстояние до тысяч километров. И в этом случае тот самый фотон, который передается, многократно телепортируется. Над этой задачей работает множество групп во всем мире.

Квантовая память

Представим себе цепочку телепортаций. В каждом из звеньев есть генератор запутанных пар, который должен их создавать и распределять. Это не всегда удачно происходит. Иногда нужно ждать, пока успешно произойдет очередная попытка распределения пар. И у кубита должно быть какое-то место, где он подождет телепортации. Это и есть квантовая память.

В квантовой криптографии это своего рода промежуточная станция. Называются такие станции квантовыми повторителями, и они сейчас являются одним из основных направлений для исследований и экспериментов. Это популярная тема, в начале 2010-х повторители были очень отдаленной перспективой, но сейчас задача выглядит реализуемой. Во многом потому, что техника постоянно развивается, в том числе за счет телекоммуникационных стандартов.

Ход эксперимента в лаборатории

Если вы придете в лабораторию квантовых коммуникаций, то вы увидите много электроники и волоконную оптику. Вся оптика стандартная, телекоммуникационная, лазеры в маленьких стандартных коробочках - чипах. Если вы зайдете в лабораторию Александра Львовского , где, в частности, делают телепортацию, то вы увидите оптический стол, который стабилизирован на пневмоопорах. То есть если этот стол, который весит тонну, потрогать пальцем, то он начнет плавать, покачиваться. Это сделано по причине того, что техника, которая реализует квантовые протоколы, очень чувствительна. Если вы поставите на жесткие ножки и будете ходить вокруг, то это все будет по колебаниям стола. То есть это открытая оптика, достаточно большие дорогие лазеры. В целом это достаточно громоздкое оборудование.

Исходное состояние готовится лазером. Для подготовки запутанных состояний используется нелинейный кристалл, который накачивается импульсным или непрерывным лазером. За счет нелинейных эффектов рождаются пары фотонов. Представим себе, что у нас есть фотон энергии два - ℏ(2ω), он преобразуется в два фотона энергии один - ℏω+ ℏω. Эти фотоны рождаются только вместе, не может сначала отделиться один фотон, потом другой. И они связаны (запутаны) и проявляют неклассические корреляции.

История и актуальные исследования

Итак, в случае квантовой телепортации наблюдается эффект, который в ежедневной жизни мы наблюдать не можем. Но зато был очень красивый, фантастический образ, который как нельзя кстати подходил для описания этого явления, поэтому и назвали так - квантовая телепортация. Как уже было сказано, нет момента времени, когда здесь кубит еще существует, а там он уже появился. То есть сначала здесь уничтожено, а только потом там появляется. Это и есть та самая телепортация.

Квантовая телепортация была предложена теоретически в 1993 году группой американских ученых под руководством Чарльза Беннета - тогда и появился этот термин. Первая экспериментальная реализация была проведена в 1997 году сразу двумя группами физиков в Инсбруке и Риме. Постепенно ученым удавалось передавать состояния на все большее расстояние - от одного метра до сотен километров и более.

Сейчас люди пытаются делать эксперименты, которые, возможно, в будущем станут основой для квантовых повторителей. Ожидается, что спустя 5–10 лет мы увидим реальные квантовые повторители. Развивается и направление передачи состояния между объектами разной природы, в том числе в мае 2016 года была проведена гибридная квантовая телепортация в Квантовом центре, в лаборатории Александра Львовского. Теория тоже не стоит на месте. В том же Квантовом центре под руководством Алексея Федорова разрабатывается протокол телепортации уже не в одну сторону, а двунаправленный, чтобы с помощью одной пары сразу одновременно навстречу друг другу телепортировать состояния.

В рамках нашей работы над квантовой криптографией создается квантовое устройство распределения и ключа, то есть мы генерируем ключ, который невозможно перехватить. А дальше уже пользователь может зашифровать этим ключом информацию, используя так называемый одноразовый блокнот. Новые преимущества квантовых технологий должны раскрыться в ближайшее десятилетие. Развивается создание квантовых сенсоров. Их суть в том, что за счет квантовых эффектов мы можем гораздо точнее измерять, например, магнитное поле, температуру. То есть берутся так называемые NV-центры в алмазах - это крошечные алмазы, в них есть азотные дефекты, которые ведут себя квантовые объекты. Они очень похожи на замороженный одиночный атом. Смотря на этот дефект, можно наблюдать изменения температуры, причем и внутри одиночной клетки. То есть измерить не просто температуру под мышкой, а температуру органеллы внутри клетки.


В Российском квантовом центре также есть проект спинового диода. Идея такова, что мы можем взять антенну и начать очень эффективно собирать энергию из фоновых радиоволн. Достаточно вспомнить, сколько Wi-Fi-источников сейчас в городах, чтобы понять, что энергии радиоволн вокруг очень много. Ее можно использовать для носимых датчиков (например, для датчика уровня сахара в крови). Для них нужна постоянная энергетическая подпитка: либо батарейка, либо такая система, которая собирает энергию, в том числе от мобильного телефона. То есть, с одной стороны, эти задачи можно решать с существующей элементной базой с определенным качеством, а с другой стороны, можно применить квантовые технологии и решить эту задачу еще лучше, еще более миниатюрно.

Квантовая механика очень сильно изменила человеческую жизнь. Полупроводники, атомная бомба, атомная энергетика - это все объекты, работающие благодаря ей. Весь мир сейчас бьется над тем, чтобы начать управлять квантовыми свойствами одиночных частиц, в том числе запутанных. Например, в телепортации участвуют три частицы: одна пара и целевая. Но каждая из них управляется отдельно. Индивидуальное управление элементарными частицами открывает новые горизонты для техники, в том числе квантовый компьютер.

Юрий Курочкин , кандидат физико-математических наук, глава лаборатории квантовых коммуникаций Российского квантового центра.

Теги:

Добавить метки

На сайте журнала Nature, 9 августа вышла китайских учёных, которым удалось осуществить квантовую телепортацию на расстояние около 97 км. Это новый рекорд, хотя в arXiv.org ешё с 17 мая лежит пока нигде не опубликованная другой группы, которая сообщает об удачных экспериментах по телепортации на расстояние около 143 км.

Несмотря на то, что явление квантовой телепортации изучается уже довольно давно, у людей, далёких от науки, отсутствует понимание того, что же это такое. Попробую развеять некоторые мифы, связанные с этой частью науки.

Миф 1: квантовая телепортация теоретически позволяет телепортировать любой объект.

На самом деле, при квантовой телепортации передаются не физические объекты, а некая информация, записанная при помощи квантовых состояний объектов. Обычно этим состоянием является поляризация фотонов. Как известно, фотон может иметь две различные поляризации: например, горизонтальную и вертикальную. Их можно использовать как переносчики побитовой информации: скажем, 0 будет соответствовать горизонтальной поляризации, а 1 - вертикальной. Тогда передача состояния одного фотона другому обеспечит и передачу информации.

В случае квантовой телепортации передача данных происходит следующим образом. Вначале создаётся пара так называемых сцепленных фотонов. Это означает, что их состояния оказываются в некотором смысле связанными: если у одного при измерении поляризация окажется горизонтальной, то у другого всегда будет вертикальной и наоборот, при чём и тот, и другой вариант возникает с одинаковой вероятностью. Затем эти фотоны разносятся: один остаётся у источника сообщения, а другой уносится его приёмником.

Когда источник хочет передать своё сообщение, он связывает свой фотон с ещё одним фотоном, состояние (то есть поляризация) которого точно известно, а затем производит измерение поляризации обоих своих фотонов. В этот момент согласованным образом меняется состояние и фотона, находящегося у приёмника. Измерив его поляризацию и узнав по другим каналам связи результаты измерений фотонов источника, приёмник может точно установит, какой бит информации был передан.

Миф 2: с помощью квантовой телепортации можно передавать информацию со скоростью, превышающей скорость света.

Действительно, согласно современным представлениям передача состояний между сцепленными фотонами происходит мгновенно, таким образом, может возникнуть ощущение, что и информация передаётся мгновенно. Это, однако, не так, поскольку хотя состояние и было передано, прочитать его, расшифровав послание, можно только после передачи дополнительной информации о том, каковы же поляризации двух фотонов, находящихся у источника. Эта дополнительная информация передаётся по классическим каналам связи и скорость её передачи превышать скорость света не может.

Миф 3: получается, что квантовая телепортация совершенно неинтересна.

Конечно, на практике оказывается, что процесс квантовой телепортации, возможно, не так захватывающ, как это может показаться по его названию, однако и он может получить важное практическое применение. В первую очередь, это безопасная передача данных. Всегда можно перехватить сообщение, посланное по классическим каналам связи, однако воспользоваться им сможет только тот, у кого находится второй сцепленный фотон. Все остальные прочитать сообщение просто не смогут. К сожалению, пока до реального использования этого эффекта далеко, на данном этапе идут лишь научные эксперименты, требующие достаточно сложной аппаратуры.

Если вас заинтересовала эта тема, возможно, вам будет также интересно почитать про то, что

Последние материалы раздела:

Бородинское сражение – кульминация романа «Война и мир Бородинская битва в произведении война и мир
Бородинское сражение – кульминация романа «Война и мир Бородинская битва в произведении война и мир

26 августа 1812 года решалась судьба России и русских людей. Сражение под Бородином у Л. Н. Толстого - это момент наивысшего напряжения, момент...

Плов из говядины пошаговый рецепт
Плов из говядины пошаговый рецепт

Интересует, как правильно приготовить плов из говядины? Сегодня это любимое блюдо в каждой семье. Часто можно встретить рецепты узбекского или...

Гадания думает ли он. Гадания на картах
Гадания думает ли он. Гадания на картах

ПОДЕЛИЛИСЬ Когда мы влюблены, то часто вспоминаем объект своей симпатии и, естественно, нам становится интересно, взаимно ли наше чувство и что...